Extensions 1→N→G→Q→1 with N=C22×D7 and Q=Q8

Direct product G=N×Q with N=C22×D7 and Q=Q8
dρLabelID
C22×Q8×D7224C2^2xQ8xD7448,1372

Semidirect products G=N:Q with N=C22×D7 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C22×D7)⋊1Q8 = (C2×C4).20D28φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7):1Q8448,207
(C22×D7)⋊2Q8 = (C22×Q8)⋊D7φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7):2Q8448,765
(C22×D7)⋊3Q8 = C14.512+ 1+4φ: Q8/C2C22 ⊆ Out C22×D7112(C2^2xD7):3Q8448,1087
(C22×D7)⋊4Q8 = C2×D14⋊Q8φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7):4Q8448,961
(C22×D7)⋊5Q8 = C2×D142Q8φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7):5Q8448,962
(C22×D7)⋊6Q8 = D7×C22⋊Q8φ: Q8/C4C2 ⊆ Out C22×D7112(C2^2xD7):6Q8448,1079
(C22×D7)⋊7Q8 = C2×D143Q8φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7):7Q8448,1266

Non-split extensions G=N.Q with N=C22×D7 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C22×D7).1Q8 = (C22×D7).Q8φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7).1Q8448,210
(C22×D7).2Q8 = (C2×C28).33D4φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7).2Q8448,211
(C22×D7).3Q8 = M4(2).25D14φ: Q8/C2C22 ⊆ Out C22×D71124(C2^2xD7).3Q8448,427
(C22×D7).4Q8 = (C2×C28).289D4φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7).4Q8448,526
(C22×D7).5Q8 = (C2×C4).45D28φ: Q8/C2C22 ⊆ Out C22×D7224(C2^2xD7).5Q8448,528
(C22×D7).6Q8 = D14⋊(C4⋊C4)φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7).6Q8448,201
(C22×D7).7Q8 = D14⋊C4⋊C4φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7).7Q8448,202
(C22×D7).8Q8 = D7×C8.C4φ: Q8/C4C2 ⊆ Out C22×D71124(C2^2xD7).8Q8448,426
(C22×D7).9Q8 = C4⋊(D14⋊C4)φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7).9Q8448,521
(C22×D7).10Q8 = D14⋊C46C4φ: Q8/C4C2 ⊆ Out C22×D7224(C2^2xD7).10Q8448,523
(C22×D7).11Q8 = D7×C2.C42φ: trivial image224(C2^2xD7).11Q8448,197
(C22×D7).12Q8 = C2×D7×C4⋊C4φ: trivial image224(C2^2xD7).12Q8448,954

׿
×
𝔽